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PRELIMINARY COMMUNICATIONS 

Osmotic pressure of a nematic solution of polydisperse rod-like 
macromolecules 

by T H E 0  ODIJK 
Department of Physical and Macromolecular Chemistry, Gorlaeus Laboratories, 

University of Leiden, P.O. Box 9502, 2300 RA Leiden, The Netherlands 

(Received 14 October 1985; accepted 12 November 1985) 

For a nematic solution of polydisperse rigid rods the osmotic pressure is proved 
to be independent of the length distribution and proportional simply to the total 
number density. This rule holds in the gaussian approximation to the Onsager 
theory. Its accuracy is demonstrated for bidisperse systems. 

The degree of orientational order in a nematic solution of slender, hard rods is 
quite high. Therefore, a physically plausible zero-order approximation to the orien- 
tational distribution function for a single rod is one that is gaussian in the angle which 
the rod makes with respect to the director. The leading terms in Onsager’s theory [l] 
of monodisperse rods are precisely those obtained in this so-called gaussian approxi- 
mation [2]. For instance, Onsager’s result for the osmotic pressure, n,, of a nematic 
solution of slender rod-like macromolecules of length L, diameter D and number 
density c: (the subscript a denotes the anisotropic phase) can be written as 

n,/kT = 3 ~ i ( l  + O(C,’)). 

Here, T signifies the temperature and k is the Boltzmann constant. In the order term 
we have introduced the scaled concentration c, = bci with b = (7r/4)L2D which is the 
average volume excluded by a pair of rods if they are randomly oriented. The gaussian 
approximation to equation (1) is simply 

X,/kT = 3~:. 

For monodisperse rods equation (2) improves in accuracy as the scaled number 
density increases. Incidentally, we note that Monte Carlo results for hard platelets is 
also asymptotic towards equation (2) in spite of the fact that several higher order 
virial coefficients come into play in that case [3]. 

Previously, it was shown that in the gaussian approximation equation (2) holds 
even for bidisperse rods provided ci is now the total number of particles per unit 
volume [2]. The terms correcting equation ( 2 )  are in general substantially smaller than 
those entering equation ( I )  because of the enhanced ordering in bidisperse systems 
[2,4]. This is demonstrated later. It is now a small step towards surmising the 
correctness of equation (2) for polydisperse rods, i.e. it holds irrespective of com- 
position. In this Preliminary Communication we show this straightforwardly. It is to 
be emphasized that the validity of equation (2) depends not only on the gaussian 
approximation, but also on the neglect of virial coefficients higher than the second and 
the neglect of end effects in the second virial coefficient itself. This implies that the rods 
must be sufficiently slender. 
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We first demonstrate the effectiveness of equation (2) in describing the osmotic 
pressure for systems of bidisperse rods. The longer rods are q times as long as the 
shorter ones (L, = qL,) and whenever convenient the concentrations c’ will be scaled 
with respect to b,  = (7~/4)LtD, thus c = c’b, . Because the rods are very slender the 
osmotic pressure, n,, in the isotropic phase (denoted by the subscript i is given by 

xi/kT = ~ { ( l  + ~ i [ l  + (4 - l)xi]’). (3) 
This expression does depend on the mole fraction xi of longer rods. When the 
isotropic and nematic phases co-exist we should have the approximate rule on 
combining equations (2) and (3) 

ci + Cl[l + (4 - 1)Xil’ 
3 ca P =  

= 1 .  (4) 

In the table the prediction expressed by equation (4) is tested against the numerical 
solution [4] of Onsager-type integral equations for q = 2 and 5. For a relatively small 
length ratio (q  = 2) the average value of p with the attendant standard deviation 
is 1.084 & 0.023 but the gaussian theory [2] improves for q = 5, viz. 
p = 1.040 & 0.033. Hence, equation (2) is practically useful for bidisperse systems 
which gives us good reason for also proving the same equation for polydisperse 
systems. 

Values ofp calculated via equation (4) using values from tables I1 and 111 of [4]. In the gaussian 
approximation p equals unity. 

xi 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

q = 2  

1.123 
1.047 
1.056 
1.067 
1.076 
1.086 
1 -093 
1.102 
1.109 
1 . 1  16 

q = 5  

1.123 
1.072 
1.027 
0.997 
1 .ooo 
1.01 1 
1.029 
1.058 
1.074 
1.092 

The Helmholtz free energy of a solution of N polydisperse rods of total number 
density c’ can be written in the second virial approximation as [l,  2,4] 

AFINkT = (x ,p? /kT)  - 1 + lnc’ + C x, lnx, + C o , x ,  
I I 1 

+ c‘ 1 1 xixjqiqjbeij. ( 5 )  
i j  

Here the indices i and j refer to the different species, py is the standard chemical 
potential of rods i, xi  is the mole fraction of rods i ,  qi = L,/L, where L, is the length 
of the shortest rods, again the excluded volume b, = (n/4)L$ with D the diameter 
which is the same for all rods (D 6 L,) ,  b, = qiqjb, is the isotropic excluded volume 
between rods of types i andj .  In the nematic phase, the negative of the orientational 
entropy o, and the dimensionless excluded volume ,oii are given by 

oi = lna, - 1, (6 )  
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These quantities have been calculated in the gaussian approximation [2] ,  i.e. they 
are just the leading order terms from Onsager’s theory [ 11. The parameters cli are to 
be determined variationally; the maximization of AF with respect to cli yields 

with 

and 

g(z)  = ( 1  + z)-1’2, 

C, = cib, .  

There are as many equations (8) as there are different species of rods and these 
equations are all interdependent. In spite of this complication, we can make signifi- 
cant progress in deducing R,  by following the analysis of (21. 

Firstly, we find from equation ( 5 )  that 

with 
v = caCCxixjqiqjeij. 

i j  

We rewrite equation (7) as follows, using equations @)--(lo), 

Hence equation (12) can be written as 

At this stage it is natural to express g- ’  as 

Since by definition we have 

q is reduced to 

It is now expedient to eliminate ca from equation (8) 
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whence 

Preliminary Communications 

The use of the equality Q;’’g(Qv) = g(QjJ finally establishes the fact that q = 2; 
accordingly, equation (2) also holds for polydisperse rods. 

We stress that in this Preliminary Communication we simply assume that the 
nematic phase is stable. To prove that equation (3) can be written as a positive definite 
form is not straightforward and we have not yet been able to do this. None the less 
it is easy to prove for the bidisperse case [ 2 ] .  On physical grounds alone it would seem 
rather unlikely that a nematic phase would not form at high concentrations just 
because of polydispersity. 

On the experimental side we remark that several groups of workers have started 
serious work on the characterization of anisotropic phases of stiff polymers such as 
TMV [5-61, polybenzylglutamate [7] and schizophyllan [8-lo]. However, one severe 
difficulty in testing rigid-rod theories in practice is the influence of semiflexibility. Its 
effect has been shown to be very significant even for quite short wormlike chains 
[ll-151. 
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